Intellia Therapeutics’ Legal Disclaimer

This presentation contains “forward-looking statements” of Intellia Therapeutics, Inc. (“Intellia”, “we” or “our”) within the meaning of the Private Securities Litigation Reform Act of 1995. These forward-looking statements include, but are not limited to, express or implied statements regarding Intellia’s beliefs and expectations regarding its: being able to enroll and dose the necessary subjects in our clinical studies for NTLA-2001 for the treatment of transthyretin amyloidosis (“ATTR”) and to successfully secure authorization of additional clinical trial applications (“CTA”) and submitting similar regulatory applications to enable clinical studies in other countries; plans to submit an investigational new drug (“IND”) application or similar clinical trial application for NTLA-5001, its first T cell receptor (“TCR”)-directed engineered cell therapy development candidate for its acute myeloid leukemia (“AML”) program in the first half of 2021; plans to submit an IND or similar clinical trial application for its hereditary angioedema (“HAE”) program in the second half of 2021; plans to advance and complete preclinical studies, including non-human primate studies for its HAE and other programs, and other animal studies supporting other in vivo and ex vivo programs, including its AML program; development of a proprietary LNP/AAV hybrid delivery system, as well as its modular platform to advance its complex genome editing capabilities, such as gene insertion; further development of its proprietary cell engineering process for multiple sequential editing; presentation of additional data at upcoming scientific conferences, and other preclinical data in 2020; advancement and expansion of its CRISPR/Cas9 technology to develop human therapeutic products, as well as its ability to maintain and expand its related intellectual property portfolio; ability to demonstrate its platform’s modularity and replicate or apply results achieved in preclinical studies, including those in its ATTR, AML, and HAE programs, in any future studies, including human clinical trials; ability to develop other in vivo or ex vivo cell therapeutics of all types, and those targeting WT1 in AML in particular, using CRISPR/Cas9 technology; ability to optimize the impact of its collaborations on its development programs, including but not limited to its collaborations with Novartis Institutes for BioMedical Research, Inc. (“Novartis”) or Regeneron Pharmaceuticals, Inc. (“Regeneron”), including its co-development programs for hemophilia A and hemophilia B; Regeneron’s ability to successfully co-develop products in the hemophilia A and B programs, and the potential timing and receipt of future milestones and royalties, or profits, as applicable, based on Intellia’s license, collaboration and, if applicable, co-development agreements with Regeneron and Novartis; and statements regarding the timing of regulatory filings and clinical trial execution, including dosing of patients, regarding its development programs; and the potential commercial opportunities, including value and market, for our product candidates; our expectations regarding our use of capital and other financial results during 2020; and our ability to fund operations for at least the next 24 months.

Any forward-looking statements in this presentation are based on management’s current expectations and beliefs of future events, and are subject to a number of risks and uncertainties that could cause actual results to differ materially and adversely from those set forth in or implied by such forward-looking statements. These risks and uncertainties include, but are not limited to: risks related to Intellia’s ability to protect and maintain its intellectual property position; risks related to Intellia’s relationship with third parties, including its licensors and licensees; risks related to the ability of its licensors to protect and maintain their intellectual property position; uncertainties related to regulatory agencies’ evaluation of regulatory filings and other information related to its product candidates; uncertainties related to the authorization, initiation and conduct of studies and other development requirements for its product candidates; the risk that any one or more of Intellia’s product candidates, including those that are co-developed, will not be successfully developed and commercialized; the risk that the results of preclinical studies or clinical studies will not be predictive of future results in connection with future studies; and the risk that Intellia’s collaborations with Novartis or Regeneron or its other ex vivo collaborations will not continue or will not be successful. For a discussion of these and other risks and uncertainties, and other important factors, any of which could cause Intellia’s actual results to differ from those contained in the forward-looking statements, see the section entitled “Risk Factors” in Intellia’s most recent annual report on Form 10-K as well as discussions of potential risks, uncertainties, and other important factors in Intellia’s other filings with the Securities and Exchange Commission (“SEC”). All information in this presentation is as of the date of the presentation, and Intellia undertakes no duty to update this information unless required by law.
Our Mission

Developing curative genome editing treatments that can positively transform the lives of people living with severe and life-threatening diseases
Modular Platform Drives Diversified Pipeline

FULL-SPECTRUM GENOME EDITING COMPANY

PIPELINE

- **NTLA-2001 for ATTR**: Dosed first patient in global Phase 1 study
- **NTLA-5001 for AML**: Expect to submit IND in 1H 2021 for WT1-directed TCR T cell therapy
- **NTLA-2002 for HAE**: Expect to submit IND in 2H 2021

PLATFORM

- Rapid identification of development candidates
- Precise knockout and/or insertion *in vivo* and *ex vivo*
- Transient Cas9 expression via non-viral delivery

CORPORATE

- Experienced management team
- Well capitalized to drive pipeline forward

ATTR: Transthyretin Amyloidosis
IND: Investigational New Drug or IND-equivalent
AML: Acute Myeloid Leukemia
HAE: Hereditary Angioedema
WT1: Wilms’ Tumor 1
TCR: T Cell Receptor
Building a Full-Spectrum Genome Editing Company

CRISPR is the therapy

- Genetic diseases

Modular Platform

In Vivo

CRISPR is the therapy

Ex Vivo

CRISPR creates the therapy

- Immuno-oncology
- Autoimmune diseases

LNP: Lipid Nanoparticle
CRISPR/Cas9 is an Effective Tool for Modifying the Genome

1. **KNOCKOUT**
 - Inactivation/deletion of disease-causing DNA sequence

2. **REPAIR**
 - Correction of “misspelled” disease-driving DNA sequence

3. **INSERT**
 - Insert new DNA sequence to manufacture therapeutic protein
Development Pipeline Fueled by Robust Research Engine

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>APPROACH</th>
<th>Research</th>
<th>Candidate Selection</th>
<th>IND-Enabling</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>PARTNER</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Vivo: CRISPR is the therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTLA-2001: Transthyretin Amyloidosis</td>
<td>Knockout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intella, REGENERON</td>
</tr>
<tr>
<td>NTLA-2002: Hereditary Angioedema</td>
<td>Knockout</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intella, REGENERON</td>
</tr>
<tr>
<td>Hemophilia A and B</td>
<td>Insertion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>REGENERON, Intella</td>
</tr>
<tr>
<td>Research Programs</td>
<td>Knockout, Insertion, Consecutive Edits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intella, REGENERON</td>
</tr>
<tr>
<td>Research Programs</td>
<td>Various</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intella, REGENERON</td>
</tr>
<tr>
<td>Ex Vivo: CRISPR creates the therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTQ923 / HIX763: Sickle Cell Disease</td>
<td>HSC</td>
<td></td>
<td></td>
<td>Phase 1/2</td>
<td></td>
<td></td>
<td></td>
<td>Intella, NOVARTIS</td>
</tr>
<tr>
<td>NTLA-5001: Acute Myeloid Leukemia</td>
<td>WT1-TCR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intella, NOVARTIS</td>
</tr>
<tr>
<td>Solid Tumors</td>
<td>WT1-TCR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intella, NOVARTIS</td>
</tr>
<tr>
<td>Undisclosed Programs</td>
<td>Undisclosed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intella, NOVARTIS</td>
</tr>
<tr>
<td>Other Novartis Programs</td>
<td>CAR-T, HSC, OSC</td>
<td></td>
<td></td>
<td>UNDISCLOSED</td>
<td></td>
<td></td>
<td></td>
<td>NOVARTIS</td>
</tr>
</tbody>
</table>

* Lead development and commercial party ** Rights to certain *in vivo* targets *** Milestones & royalties
CAR-T: Chimeric Antigen Receptor T cells HSC: Hematopoietic Stem Cells OSC: Ocular Stem Cells
In Vivo

CRISPR is the therapy

GENETIC DISEASES

Strategic Advantages:

Systemic non-viral delivery of CRISPR/Cas9 provides transient expression

Potentially curative therapy from single course of treatment

Permanent gain of function with targeted gene insertion
Modular Approach to Unlocking Treatment of Genetic Diseases

PROPRIETARY LNP DELIVERY SYSTEM
- Transient expression
- Large cargo capacity
- Redosing capability

ENABLES MULTIPLE EDITING STRATEGIES

Remove
- KNOCKOUT
 - Knockout toxic or compensatory genes

Insert
- INSERT
 - Introduce functional DNA sequence
 - Any combination of knockout and insertion strategies + AAV

Restore
- Remove / Restore
 - CONSECUTIVE EDITING
 - Any combination of knockout and insertion strategies
Modular *In Vivo* Genome Editing Approach Validated Across Multiple Targets

Remove

KNOCKOUT
Knockout toxic or compensatory genes

ATTR:
>95% reduction of serum TTR sustained for a year in NHPs

Hem B:
Circulating human FIX protein in NHPs at or above normal levels

Restore

INSERT
Introduce functional DNA sequence

Hem B:
Circulating human FIX protein in NHPs at or above normal levels

Remove / Restore

CONSECUTIVE EDITING
Any combination of knockout and insertion strategies

AATD:
>98% reduction of disease-causing protein and sustained restoration of wild type AAT in serum to therapeutic levels in mice

AATD: Alpha-1 Antitrypsin Deficiency
FIX: Factor IX
Hem B: Hemophilia B
NHP: Non-Human Primate
Transthyretin Amyloidosis (ATTR)

Caused by accumulation of misfolded transthyretin (TTR) protein, which affects nerves, heart, kidneys and eyes

- **50,000** hATTR patients worldwide\(^1\)
- **~200-500K** wtATTR patients worldwide\(^2\)

2-15 years typical life expectancy from onset of symptoms\(^1\)

Only chronic treatment options currently available

NTLA-2001 in development for ATTR

- Employs a knockout edit to reduce circulating TTR protein levels
- Aims to address hATTR and wtATTR, both polyneuropathy and cardiomyopathy, with a single course of treatment

\(^1\) Ann Med. 2015; 47(8): 625–638. \(^2\) Compiled from various sources

\(\text{hATTR: Hereditary ATTR} \quad \text{wtATTR: Wild-Type ATTR}\)
ATTR: Sustained >95% Serum TTR Protein Reduction After a Single Dose in NHPs

![Graph showing sustained reduction of TTR protein after a single dose](image)

- **Control**
- **Lead LNP: Dose Level #1 (n=3)**
- **Lead LNP: Dose Level #2 (n=3)**

Therapeutically relevant serum TTR knockdown

Single Dose
First Patient Dosed in Landmark CRISPR/Cas9 Clinical Trial

NTLA-2001 Global Phase 1 Study Design: Two-part, open-label, multi-center study of NTLA-2001 in adults with hATTR with polyneuropathy

Total Enrollment:
Up to 38 patients, age 18 to 80 years

Intervention:
Single dose administered via an intravenous (IV) infusion

PART I
Single-Ascending Dose

- N= Up to 30 subjects*
- Up to 4 dose-escalation cohorts

PART II
Single Dose Expansion Cohort

- N = 8 subjects
- Administer optimal dose selected from Part I

PRIMARY OBJECTIVES
Evaluate safety, tolerability, PK and PD
- Measure serum TTR levels

SECONDARY OBJECTIVES
Evaluate efficacy on clinical measures of neurologic function
- Neuropathic impairment endpoints include NIS (Part 1 and 2) and mNIS+7 (Part 2 only)

*Minimum of 3 subjects per cohort
NIS: Neuropathy Impairment Score
mNIS+7: modified NIS+7
PK: Pharmacokinetics
PD: Pharmacodynamics

Clinicaltrials.gov ID: NCT04601051
Hereditary Angioedema (HAE)

Genetic disease characterized by overproduction of bradykinin, which leads to **recurring, severe and unpredictable swelling** in various parts of the body.

<table>
<thead>
<tr>
<th>1 in 50,000 HAE patients(^1)</th>
<th>Attacks can occur every 7-14 days on average for untreated patients(^1)</th>
<th>NTLA-2002 in development for HAE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airway obstruction is particularly dangerous because it can cause death by asphyxiation</td>
<td>Only chronic treatment options currently available</td>
<td>• Employs a knockout edit of KLKB1 gene in hepatocytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Aims to reduce plasma kallikrein activity to prevent excess bradykinin production leading to HAE attacks after a single course of treatment</td>
</tr>
</tbody>
</table>

Knockout of KLKB1 Aims to Reduce Bradykinin Activity in People with HAE

- Kallikrein inhibitors are **clinically validated** in preventing HAE attacks.
- **KLKB1** knockout is **expected to be safe**, as human nulls show no associated pathology*

Achieved Sustained Therapeutically Relevant Kallikrein Activity Reduction After a Single Dose in NHPs

*K Banerji et al., NEJM, 2017

![Graph showing Kallikrein Activity Reduction](image)
HAE: Rapid Path to NTLA-2002 Development Candidate Nomination

LNP Delivery System:
gRNA Reprograms Genetic Target

- Cas9 mRNA
- AAAA
- **KLKB1 gRNA**
- **TTR gRNA**
- Target-specific gRNA

HAE Program:

Builds on ATTR program’s infrastructure, including modular LNP delivery system

Applies insights gained from ATTR and other research programs to liver knockout target

Platform advances expedite progression to NHP proof-of-concept

Expect to submit IND or IND-equivalent in 2H 2021
Ex Vivo

CRISPR creates the therapy

IMMUNO-ONCOLOGY / AUTOIMMUNE DISEASES

Strategic Advantages:

CRISPR/Cas9 enables precise genome engineering for creating cell therapies to treat IO and AI diseases

Pursuing modalities, such as TCR, with broad potential in multiple indications

Focused on recapitulating natural cell physiology
TCR T Cell Modality Broadens Opportunity to Address Most Tumors

Selecting naturally-occurring, high-affinity TCRs

- TCRs efficiently detect tumor antigens
- Physiological signaling minimizes T cell exhaustion and immune toxicity
- Healthy donor TCRs avoid reactivity against normal tissues
- High-affinity TCRs can activate both cytotoxic and helper T cells

Total Addressable Tumor Targets

CAR-T: Limited to surface antigens

TCRs: Recognizes both surface and intracellular antigens

Intracellular Tumor Antigens

CRISPR Engineering Overcomes Key Challenges of Traditional Approaches

Key Challenges

- Mutagenesis risk from random lentiviral insertion
- Mixed expression of endogenous and tgTCR
- Mispaired TCRs have unpredictable specificities and pose GvHD risk
- Lower tgTCR expression per T cell leads to reduced efficacy

Our Solution

- Precise replacement of endogenous TCR with tgTCR
- No insertional mutagenesis risk
- Reduced risk of unwanted reactivity against normal tissues
- High tgTCR expression per T cell leads to a more efficacious cell product
Our Approach for TCR Replacement with Elimination of Endogenous TCRs Creates a Homogenous T Cell Product

Intellia’s Approach (TRAC and TRBC KO + Insertion)

TRAC KO only + Insertion

High and Uniform Expression of tgTCR per T cell

Removal of Endogenous TCR Prevents Mispairing

Normalized tgTCR Expression (%)

% Cells with mispaired TCRs

TCR A TCR B TCR C TCR D

TCR A TCR B TCR C TCR D

Based on FACs analysis
Proprietary Process Enables Multiple Sequential Edits With Minimal Translocations

Efficient multiplexed editing

- Standard Process: Cas9/sgRNA RNP electroporation based on manufacturer’s instructions

Higher T cell expansion

Reduced translocations

- Intellia Process

Gene 1
Gene 2
Gene 3

% Editing

Fold Expansion

Cumulative Translocation Events per 200 Cells

- Translocations to other chromosomes
- Reciprocal Translocations
- Complex Translocations
Acute Myeloid Leukemia (AML)

Cancer of the blood and bone marrow that is rapidly fatal without immediate treatment, and is the most common type of acute leukemia in adults.\(^1\)

\(\geq 21K\) new cases in the U.S. in 2019\(^1\)

\(\geq 40K\) new cases in the 7MM\(^2\) in 2018\(^1\)

\(<30\%\) 5-year overall survival\(^1\)

NTLA-5001 in development for AML

- Engineer WT1-directed T cells capable of specifically killing AML blasts

\(^1\) NIH SEER Cancer Stat Facts: Leukemia – Acute Myeloid Leukemia (AML)

\(^2\) GlobalData EpiCast Report: Acute Myeloid Leukemia July 2017, 7MM: Seven Major Markets (includes U.S.)
Wilms’ Tumor 1 (WT1) is an Attractive Tumor Target

WT1 is Overexpressed in >90% of AML Blasts
- Independent of mutational status
- Low normal tissue expression

WT1 is Overexpressed in Variety of Solid Tumors
- AML program provides foundation for expansion into solid tumors

Sugiyama et al., Jap J Clin Oncol, 2010
Cilloni et al., J Clin Oncol, 2009
Engineered T Cells Capable of Specific and Potent Killing of WT1-Positive AML Blasts

Lead WT1-Specific TCR Profile:

• Sourced from healthy donor T cells
• *HLA-A*02:01 restricted TCR
• Displays high avidity for VLD* epitope
 – VLD epitope is efficiently processed by tumor proteasome, and presented by AML blasts

Proprietary T Cell Engineering Process Yields:

• Consistent high-level editing efficacy
• High and homogeneous tgTCR expression
• Cytotoxic and helper T cell response
• No detectable bone marrow cell toxicity

*VLD is the WT1(37-45) epitope VLDFAPPGA
In collaboration with IRCCS Ospedale San Raffaele
Achievements and Next Steps

- Engineered WT1-specific T cells capable of specifically killing patient-derived AML blasts
- Nominated NTLA-5001 as development candidate
- Submit IND or IND-equivalent in 1H 2021
Multiple Workstreams to Advance Cell Therapy Efficacy in Solid Tumors

Allogeneic Cell Source
• Knock out MHC-I and MHC-II complexes
• Address multiple surface protein signals
• Achieve persistence in presence of natural killer cells

Functional Modulation
• Knock out and/or knock-in of key receptors, including checkpoint inhibitors, to modulate T cell functionality in multiple microenvironments

Solid Tumor Efficacy
• CRISPR screening to unravel targetable key regulators of T cell fitness in the tumor microenvironment
Upcoming Milestones: Driving Forward *In Vivo* and *Ex Vivo* Programs in 2020

<table>
<thead>
<tr>
<th>NTLA-2001</th>
<th>NTLA-5001</th>
<th>NTLA-2002</th>
<th>R&D Advancements</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Vivo</td>
<td>Ex Vivo</td>
<td>In Vivo</td>
<td></td>
</tr>
<tr>
<td>ATTR</td>
<td>AML</td>
<td>HAE</td>
<td></td>
</tr>
<tr>
<td>✔ Received regulatory authorization to initiate Phase 1 study ✔ Dosed first patient in global Phase 1 study by YE 2020</td>
<td>✔ Presented preclinical data at scientific conference in 1Q 2020 ○ Submit IND or IND-equivalent for NTLA-5001 in 1H 2021</td>
<td>✔ Presented preclinical data at scientific conference in 1Q 2020 ✔ Nominated NTLA-2002 as development candidate in 1H 2020 ○ Submit IND or IND-equivalent for NTLA-2002 in 2H 2021</td>
<td>○ Present preclinical data at upcoming scientific conferences in 2020</td>
</tr>
</tbody>
</table>

Intellia Therapeutics
Intellia Therapeutics